博客
关于我
LeetCode 486. 预测赢家(dp)
阅读量:226 次
发布时间:2019-03-01

本文共 903 字,大约阅读时间需要 3 分钟。

题意

给定一个表示分数的非负整数数组,玩家1和玩家2将按照规则轮流从数组两端拿取分数。玩家1先手,随后玩家2从剩余的另一端拿取,依此类推,直到分数全部拿完。最终,总分数较高的玩家获胜。如果两人的总分数相等,玩家1仍为赢家。

解法

这个问题可以通过动态规划来解决。我们定义d[i][j]为从数组的第i个元素到第j个元素这段区间中,当前先手玩家能够获得的最大分数。递归关系式如下:

d[i][j] = max(a[i] - d[i+1][j], a[j] - d[i][j-1])

其中,a[i]表示当前玩家从左端拿取的分数,而a[j]表示从右端拿取的分数。玩家会选择使自己总分数最大的选项,即max(a[i] - d[i+1][j], a[j] - d[i][j-1])。

代码

class Solution {private:    int d[22][22];    int a[22];    int dp(int l, int r) {        if (l == r) {            return a[l];        }        if (d[l][r] != -1) {            return d[l][r];        }        return d[l][r] = std::max(a[l] - dp(l + 1, r), a[r] - dp(l, r - 1));    }    bool PredictTheWinner(std::vector
aa) { int n = aa.size(); for (int i = 0; i < n; ++i) { a[i+1] = aa[i]; } dp(1, n); return d[1][n] >= 0; }};

这个代码定义了一个动态规划数组d[l][r],用于存储从位置l到r的最大分数差值。通过递归调用,计算出每个子区间的最优策略,最终判断玩家1是否能成为赢家。

转载地址:http://mwuv.baihongyu.com/

你可能感兴趣的文章
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0007---NIO的三大核心组件关系
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0020---Selectionkey在NIO体系
查看>>
Vue踩坑笔记 - 关于vue静态资源引入的问题
查看>>
Netty工作笔记0025---SocketChannel API
查看>>
Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0057---Netty群聊系统服务端
查看>>
Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
查看>>
Netty工作笔记0063---WebSocket长连接开发2
查看>>
Netty工作笔记0070---Protobuf使用案例Codec使用
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty工作笔记0085---TCP粘包拆包内容梳理
查看>>
Netty常用组件一
查看>>
Netty常见组件二
查看>>